High temperature ignition and combustion enhancement by dimethyl ether addition to methane – air mixtures q
نویسندگان
چکیده
The effects of dimethyl ether (DME) addition on the high temperature ignition and burning properties of methane–air mixtures were studied experimentally and numerically. The results showed that for a homogeneous system, a small amount of DME addition to methane resulted in a significant reduction in the high temperature ignition delay. The ignition enhancement effect by DME addition was found to exceed that possible with equivalent amounts of hydrogen addition, and it was investigated by using radical pool growth and computational singular perturbation analysis. For a non-premixed methane–air system, it was found that two different ignition enhancement regimes exist: a kinetic limited regime and a transport limited regime. In contrast to the dramatic ignition enhancement in the kinetic limited regime, the ignition enhancement in the transport limited regime was significantly less effective. Furthermore, laminar flame speeds as well as Markstein lengths were experimentally measured for methane–air flames with DME addition. The results showed that the flame speed increases almost linearly with DME addition. However, the Markstein length and the Lewis number of the binary fuel change dramatically at small DME concentrations. Moreover, comparison between experiments and numerical simulations showed that only the most recent DME mechanism well reproduced the flame speeds of both DME–air and CH4–air flames. 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
منابع مشابه
High temperature ignition and combustion enhancement by dimethyl ether addition to methane-air flames
The effects of dimethyl ether (DME) addition on the high temperature ignition and burning properties of methane-air mixtures were studied experimentally and numerically. The results showed that for a homogeneous system, a small amount of DME addition to methane resulted in a significant reduction in the high temperature ignition delay. The ignition enhancement effect by DME addition was found t...
متن کاملEffect of Initial Temperature and EGR on Combustion and Performance Characteristics of Homogenous Charge Compression Ignition Engine Fueled with Dimethyl Ether
Homogeneous Charge Compression Ignition (HCCI) combustion is a pioneer method of combustion in which pre-mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. HCCI engines can operate with most alternative fuels, especially, dimethyl ether (DME) which has been tested as a possible diesel fuel due to its simultaneously low NOx and PM emissions. In this paper a ...
متن کاملDetonation cell Size Data for Dimethyl-ether Air Mixtures
Peter Diakow Department of Mechanical and Materials Engineering, Queen’s University, Kingston, Canada Synopsis Dimethyl-ether (C2H6O) a common hydrocarbon is increasingly being used as a transportation fuel and as an aerosol propellant, very limited explosion safety data is available for this fuel. Experiments were performed to determine the detonation characteristics of dimethyl-ether air mixt...
متن کامل2. British Petroleum (BP), “BP energy outlook 2035”, 2014 (January)
In recent years, many efforts have been made to reduce pollution in compression ignition engines. Dimethyl ether is one of the methods to achieve this goal due to its special properties such as high Cetane number and low pollution. Also, one of the parameters that plays an important role in improving combustion and engine performance is fuel injection pressure. In the present study, a numerical...
متن کاملTheoretical study of the effect of hydrogen addition to natural gas-fueled direct-injection engines
The preparation of air–fuel mixture is considerably dependent on fluid flow dynamics to achieve improved performance, efficiency, and engine combustion in the appearance of flow. In this study, the effects of mixtures of hydrogen and compressed natural gas (CNG) on a spark ignition engine are numerically considered. This article presents the results of a direct-injection engine using methane–hy...
متن کامل